
An independent parametrization of an acute triangle and its
applications

Arkady Alt, San Jose, California, USA

Let us start with a problem that was proposed at the 40th IMO Vietnam Team
Selection Test, 2001 (Problem 1, day 2).

P1. Let a, b, c > 0 and p, q, r > 0. Determine the minimum value of
p

x
+

q

y
+

r

z
,

where x, y, z are positive real numbers such that ayz + bzx + cxy ≤ d. (In the
original problem p = 1, q = 2, r = 3, a = 2, b = 8, c = 21, d = 12).

In what follows we will prove that any three positive numbers can be considered
as distances from the circumcenter of an acute triangle to its sides (exact trilinear
coordinates of the circumcenter). They will be defined in a certain way as shown
in part i. of Theorem 1 below. In addition, we will show that this triangle has a
distinct feature described in part ii. of Theorem 1 and can be written as inequality
(5).

Theorem 1. Let k, l and m be positive real numbers, then

i. There is a unique acute triangle for which these numbers are the distances from
its circumcenter to its sides and the sidelengths of the triangle are

a = 2
√

R2 − k2, b = 2
√

R2 − l2,c = 2
√

R2 −m2

where R (circumradius) is the only positive root of the cubic equation

t3 − t
(
k2 + l2 + m2

)
− 2klm = 0;

ii. The area, F, of this triangle is

min
α,β,γ∈

(
0,

π

2

)(k2 tanα + l2 tanβ + m2 tan γ) where, α + β + γ = π.

Proof. i. Necessity. Let ABC be an acute triangle and let k, l,m be the distances
from its circumcenter O to the sides BC, CA, AB, respectively. Let R be the
circumradius of ABC. Because OA = OB = OC = R and ∠BOC = 2A,
∠COA = 2B,∠AOB = 2C, we have

k

R
= cos A,

l

R
= cos B,

m

R
= cos C.
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Using the identity cos2 α + cos2 β + cos2 γ + 2 cos α cos β cos γ = 1, which holds
for any α, β, γ > 0 with α + β + γ = π, we obtain

k2

R2
+

l2

R2
+

m2

R2
+

2klm

R3
= 1,

or equivalently
R3 −R

(
k2 + l2 + m2

)
− 2klm = 0. (1)

Note that R is the only positive root of the cubic equation (1)

t3 − t
(
k2 + l2 + m2

)
− 2klm = 0

because the function ϕ (t) = 1 − 2klm

t3
− k2 + l2 + m2

t2
is increasing on the

interval (0,∞) .

Sufficiency. Let k, l,m be positive real numbers and consider the cubic equation
(1). Note that

ϕ
(√

k2 + l2 + m2
)

< 0 as lim
t→∞

ϕ (t) = 1

and ϕ (t) is increasing on the interval (0,∞) . Hence equation (1) has a single
positive real root on

(√
k2 + l2 + m2,∞

)
, which we denote by R. Because

R3 −R
(
k2 + l2 + m2

)
− 2klm = 0 ⇐⇒ k2

R2
+

l2

R2
+

m2

R2
+

2klm

R3
= 1

and
k

R
,

l

R
,
m

R
< 1 for angles

α1 = cos−1

(
k

R

)
, β1 = cos−1

(
l

R

)
, γ1 = cos−1

(m

R

)
we have

cos2 α1 + cos2 β1 + cos2 γ1 + 2 cos α1 cos β1 cos γ1 = 1 (2)

and α1, β1, γ1 ∈
(
0,

π

2

)
. It follows that α1 + β1 + γ1 = π. Indeed, since

cos2 α1 + cos2 β1 + cos2 γ1 + 2 cos α1 cos β1 cos γ1 − 1

= cos2 γ1 +
cos 2α1 + cos 2β1

2
+ cos γ1 (cos (α1 + β1) + cos (α1 − β1))

= cos2 γ1 + cos (α1 + β1) cos (α1 − β1)
+ cos γ1 cos (α1 + β1) + cos γ1 cos (α1 − β1)
= (cos γ1 + cos (α1 + β1)) (cos γ1 + cos (α1 − β1))
= 4 cos ϕ cos (ϕ− α1) cos (ϕ− β1) cos (ϕ− γ1)
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where ϕ =
α1 + β1 + γ1

2
and ϕ− α1, ϕ− β1, ϕ− γ1 ∈

(
−π

4
,
π

2

)
, ϕ ∈

(
0,

3π

4

)
.

Then equation (2) is equivalent to

cos ϕ cos (ϕ− α1) cos (ϕ− β1) cos (ϕ− γ1) = 0 ⇐⇒ cos ϕ = 0 ⇐⇒ ϕ =
π

2
.

Thus we can conclude that R and α1, β1, γ1 determine an acute triangle ABC with
sides

BC = 2R sinα1 = 2
√

R2 − k2

CA = 2R sinβ1 = 2
√

R2 − l2

AB = 2R sin γ1 = 2
√

R2 −m2

and circumradius R such that

R cos α1 = k

R cos β1 = l

R cos γ1 = m

are distances from the circumcenter to the sides BC, CA, and AB, respectively.

ii. First, we will prove that for any α, β ∈
(
0,

π

2

)
the following inequality holds

k2 tanα + l2 tanβ ≥ 2kl

sin (α + β)
−

(
k2 + l2

)
cot (α + β) (3).

Because cos α, cos β, sin (α + β) > 0, we obtain

(3) = k2 (tanα + cot (α + β)) + l2 (tanβ + cot (α + β)) ≥ 2kl

sin (α + β)

⇐⇒ k2 cos β

cos α sin (α + β)
+

l2 cos α

cos β sin (α + β)
≥ 2kl

sin (α + β)

⇐⇒ (k cos β − l cos α)2 ≥ 0.

Equality occurs when
k

cos α
=

l

cos β
. Let α, β, γ ∈

(
0,

π

2

)
and α + β + γ =

π then using inequality (3) we obtain

k2 tanα + l2 tanβ + m2 tan γ ≥ 2kl

sin (α + β)
−

(
k2 + l2

)
cot (α + β) + m2 tan γ

= h (γ) ,
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where h (γ) =
2kl

sin γ
+

(
k2 + l2

)
cot γ + m2 tan γ. Because cos β = − cos (α + λ) ,

then the equality in the above inequality can be written as

k

cos α
=

l

cos β
⇐⇒ k cos β = l cos α

⇐⇒ k (− cos λ cos α + sin γ sinα) = l cos α

⇐⇒ −k cos γ + k tanα sin γ = l

⇐⇒ k tanα =
l

sin γ
+ k cot γ

⇐⇒ k2 tan2 α =
l2 + k2 + 2kl cos γ

sin2 γ
− k2

⇐⇒ k2

cos2 α
=

l2 + k2 + 2kl cos γ

sin2 γ
.

Thus the equality case is
k

cos α
=

l

cos β
=

√
l2 + k2 + 2kl cos γ

sin γ
.

Now we will find the minimum of h (γ) on the interval
(
0,

π

2

)
. We have

h′ (γ) = −2kl cos γ

sin2 γ
− k2 + l2

sin2 γ
+

m2

cos2 γ
=

cos γ

m sin2 γ
· P

(
m

cos γ

)
,

where P (t) = t3 − t
(
k2 + l2 + m2

)
− 2klm. Equation P (x) = 0 has a single

positive root t = R. Furthermore,

P (t) < 0 ⇐⇒ ϕ (t) < ϕ (R) = 0 for t ∈ (0, R)

and
P (t) > 0 ⇐⇒ ϕ (t) > ϕ (R) = 0 for t ∈ (R,∞)

hence the local minimum of h (γ) , attained at γ = γ1 = cos−1
(m

R

)
, is also a

global minimum. The lower bound of h (γ1) for k2 tanα+l2 tanβ+m2 tan γ, can
be reached when both of the inequalities k2 tanα+l2 tanβ+m2 tan γ ≥ h (γ) ≥
h (γ1) are in fact equalities, i.e. if and only if k

cos α
=

l

cos β
=

√
l2 + k2 + 2kl cos γ

sin γ
γ = γ1

. (4)
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Because

l2 + k2 + 2kl cos γ1 = l2 + k2 +
2klm

R

=
R

(
l2 + k2

)
+ 2klm

R
=

R3 −Rm2

R
= R2 −m2

= R2 sin2 γ1

,

√
l2 + k2 + 2kl cos γ1

sin γ1
= R and, therefore,

(4) ⇐⇒


k

cos α
=

l

cos β
= R

γ = γ1

⇐⇒


cos α =

k

R

cos β =
l

R
γ = γ1

⇐⇒


cos α = cos α1

cos β = cos β1

γ = γ1

⇐⇒ α = α1, β = β1, γ = γ1.

Thus

min
{

k2 tanα + l2 tanβ + m2 tan γ : 0 < α, β, γ <
π

2
, α + β + γ = π

}
= k2 tanα1 + l2 tanβ1 + m2 tan γ1,

where

α1 = cos−1

(
k

R

)
β1 = cos−1

(
l

R

)
γ1 = cos−1

(m

R

)
⇐⇒ tanα1 =

√
R2 − k2

k

tanβ1 =
√

R2 − l2

l

tan γ1 =
√

R2 −m2

m
,

and R is the single positive root of equation t3 − t
(
k2 + l2 + m2

)
− 2klm = 0.

Because

k2 tanα1 + l2 tanβ1 + m2 tan γ1 = k
√

R2 − k2 + l
√

R2 − l2 + m
√

R2 −m2

= F,
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where F is the area of an acute triangle defined by circumradius R and distances
k, l,m from circumcenter to the sides,

min
{

k2 tanα + l2 tanβ + m2 tan γ : 0 < α, β, γ <
π

2
, α + β + γ = π

}
= F,

Remark 1. The result in part ii. of Theorem 1 can be represented in an
inequality as

k2 tanα + l2 tanβ + m2 tan γ ≥ k
√

R2 − k2 + l
√

R2 − l2 + m
√

R2 −m2, (5)

where 0 < α, β, γ <
π

2
, α + β + γ = π. Equality occurs if and only if

tanα =
√

R2 − k2

k
, tanβ =

√
R2 − l2

l
, tan γ =

√
R2 −m2

m
.

If we let u = cot α, v = cot β, w = cot γ, then (5) becomes

k2

u
+

l2

v
+

m2

w
≥ k

√
R2 − k2 + l

√
R2 − l2 + m

√
R2 −m2, (6)

where u, v, w > 0 and uv + vw + wu = 1. Equality occurs if and only if

u =
k√

R2 − k2
, v =

l√
R2 − l2

, w =
m√

R2 −m2
.

Remark 2. Let ∆ (x, y, z) = 2xy + 2yz + 2zx − x2 − y2 − z2. Because a =
2
√

R2 − k2, b = 2
√

R2 − l2,c = 2
√

R2 −m2 and 16F 2 = ∆
(
a2, b2, c2

)
,

F 2 = 2
∑
cyc

(
R2 − l2

) (
R2 −m2

)
−

∑
cyc

(
R2 − k2

)2

= R2
(
k2 + l2 + m2

)
+ 6Rklm + ∆

(
k2, l2,m2

)
and

F = k
√

R2 − k2 + l
√

R2 − l2 + m
√

R2 −m2

=
√

R2 (k2 + l2 + m2) + 6Rklm + ∆ (k2, l2,m2).

Application 1. We will use the above theorem to solve problem P1. Note that the
minimum of

p

x
+

q

y
+

r

z
cannot be attained at (x, y, z) for which ayz+bzx+cxy < d.

Actually, if ayz + bzx + cxy < d then for z1 =
d− cxy

ay + bx
p

x
+

q

y
+

r

z1
<

p

x
+

q

y
+

r

z
, because z < z1.
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Thus min
{

p

x
+

q

y
+

r

z
| x, y, z > 0 and ayz + bzx + cxy ≤ d

}
=

min
{

p

x
+

q

y
+

r

z
| x, y, z > 0 and ayz + bzx + cxy = d

}
.

Let u = x

√
bc

ad
, v = y

√
ca

bd
and w = z

√
ab

cd
. Then x = u

√
ad

bc
,

y = v

√
bd

ca
, z = w

√
cd

ab
, where u, v, w are any positive real numbers. Then

ayz + bzx + cxy = d ⇐⇒ a

d
yz +

b

d
zx +

c

d
xy = 1 ⇐⇒ uv + vw + wu = 1

and
p

x
+

q

y
+

r

z
=

k2

u
+

l2

v
+

m2

w
, where k2 = p

√
bc

ad
, l2 = q

√
ca

bd
, m2 = r

√
ab

cd
. Thus we ob-

tain following equivalent representation of our problem: Find the min
{

k2

u
+

l2

v
+

m2

w
| u, v, w > 0 and uv + vw + wu = 1

}
.

Using part ii. of Theorem 1 we obtain

min

{
k2

u
+

l2

v
+

m2

w
| u, v, w > 0 and uv + vw + wu = 1

}
=

k2

u1
+

l2

v1
+

m2

w1

= k
√

R2 − k2 + l
√

R2 − l2 + m
√

R2 −m2,

where u1 =
k√

R2 − k2
, v1 =

l√
R2 − l2

, w1 =
m√

R2 −m2
. Then for the initial

problem we have

min
{

p

x
+

q

y
+

r

z
: x, y, z > 0 and ayz + bzx + cxy ≤ d

}
=

p

x1
+

q

y1
+

r

z1

= k
√

R2 − k2 + l
√

R2 − l2 + m
√

R2 −m2,

where

k2 = p

√
bc

ad

l2 = q

√
ca

bd

m2 = r

√
ab

cd

x1 =
p

k
√

R2 − k2

y1 =
q

k
√

R2 − l2

z1 =
r

m
√

R2 −m2
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and R is a positive root of the cubic equation (1).

Application 2. Due to the well known duality orthocenter↔circumcenter, Theo-
rem 1 can be represented in another equivalent form:

Theorem 2. Let k, l,m be arbitrary real positive numbers. Then

i. There is a unique acute triangle, for which these numbers are the distances from
its orthocenter to its verteces and its sidelengths are

a =
√

4R2 − k2, b =
√

4R2 − l2, c =
√

4R2 −m2,

where R (circumradius) is the only positive root of a cubic equation

4t3 − t
(
k2 + l2 + m2

)
− klm = 0.

ii. The following equality holds

min
{

k2 tanα + l2 tanβ + m2 tan γ : α, β, γ ∈
(
0,

π

2

)
and α + β + γ = π

}
= 4F,

where F is area of this triangle.

Proof. Numbers k, l,m, the distances from the orthocenter H of triangle ABC to
its verteces, can at the same time be considered as distances from circumcenter
O1 = H of triangle A1B1C1

∼= 2ABC. Thus if R1 is a single positive root of t3 −
t
(
k2 + l2 + m2

)
− 2klm = 0 and

α1 = cos−1

(
k

R1

)
β1 = cos−1

(
l

R1

)
γ1 = cos−1

(
m

R1

)
then for R =

R1

2
we have

α1 = cos−1

(
k

2R

)
β1 = cos−1

(
l

2R

)
γ1 = cos−1

( m

2R

)
and R is single positive root of equation

4t3 − t
(
k2 + l2 + m2

)
− klm = 0.
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Let A1B1C1 be an acute triangle defined by angles α1, β1, γ1 and R1 as circumradius
and let a1 = B1C1, b1 = C1A1, c1 = A1B1. Then according to Theorem 1, we have

a1 = 2
√

R2
1 − k2, b1 = 2

√
R2

1 − l2,c1 = 2
√

R2
1 −m2

and

min
{

k2 tanα + l2 tanβ + m2 tan γ
... 0 < α, β, γ <

π

2
, α + β + γ = π

}
= [A1B1C1] = 4F,

where F is area of triangle ABC determined by angles α1, β1, γ1 and R =
R1

2
with

sides a =
a1

2
=
√

4R2 − k2, b =
b1

2
=

√
4R2 − l2,c =

c1

2
=
√

4R2 −m2.

[1] CRUX, Vol.30, No1, February, 2004, p.17.
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